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Abstract
Sunquakes are seismic emissions visible on the solar surface, associated with
some solar flares. Although discovered in 1998, they have only recently become
a more commonly detected phenomenon. Despite the availability of several man-
ual detection guidelines, to our knowledge, the astrophysical data produced for
sunquakes is new to the field of Machine Learning. Detecting sunquakes is a
daunting task for human operators and this work aims to ease and, if possible, to
improve their detection. Thus, we introduce a dataset constructed from acoustic
egression-power maps of solar active regions obtained for Solar Cycles 23 and
24 using the holography method. We then present a pedagogical approach to
the application of machine learning representation methods for sunquake detec-
tion using AutoEncoders, Contrastive Learning, Object Detection and recurrent
techniques, which we enhance by introducing several custom domain-specific
data augmentation transformations. We address the main challenges of the au-
tomated sunquake detection task, namely the very high noise patterns in and
outside the active region shadow and the extreme class imbalance given by the
limited number of frames that present sunquake signatures. With our trained
models, we find temporal and spatial locations of peculiar acoustic emission and
qualitatively associate them to eruptive and high energy emission. While noting
that these models are still in a prototype stage and there is much room for
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improvement in metrics and bias levels, we hypothesize that their agreement on
example use cases has the potential to enable detection of weak solar acoustic
manifestations.

Keywords: Active Regions, Flares, Waves, Helioseismology

1. Introduction

Local helioseismology has been the primary tool used to study occasional
emission of seismic transients, more commonly known as sunquakes, coming
from the solar surface or from sources submerged in the solar interior that
are sometimes released by solar flares. Kosovichev and Zharkova (1998) first
discovered sunquakes as expanding rings in the Dopplergram data using a factor
of four image-enhancement technique. The technique revealed the expanding
rings of an almost circular-shaped surface ripple after the 9 July 1996 X2.6
solar flare. Donea, Braun, and Lindsey (1999) obtained egression-power maps
using the method developed by Lindsey and Braun (2000) for this particular
sunquake event. Since then, sunquakes have become a more commonly detected
phenomenon (Donea, 2011; Kosovichev, 2011; Besliu-Ionescu, Donea, and Cally,
2017; Sharykin and Kosovichev, 2020). Typically, sunquakes are associated with
intense reconnection events in the solar atmosphere resulting in strong solar
flares, of X- or M- spectral class, although Sharykin, Kosovichev, and Zimovets
(2015) found signatures related to a weaker C.7 class event.

There are several methods to detect a seismic emission. From a chronological
point of view these are: time–distance analysis (Kosovichev and Zharkova, 1998),
seismic holography (Lindsey and Braun, 2000), and seismic ripples detection
(movie method) (Kosovichev and Zharkova, 1998; Kosovichev, 2011; Sharykin
and Kosovichev, 2020). Each method has its advantages and disadvantages; some
of them show the source, some the wave propagation, and usually not all methods
show signatures for the same flares (Sharykin and Kosovichev, 2020).

Sunquake selection criteria require a continuous detection of acoustic signal of
at least a couple of minutes and a reasonable source signal-to-noise ratio. These
criteria are further extended in Section 2.1. More elaborate and precise selection
criteria have been proposed in the literature (e.g. Chen and Zhao, 2021), where a
sunquake selection rule can be the conjuncture between impulsive flaring events
and downward background oscillatory velocity, occurring at the same location.
In practice, an intricate analysis needs to be done on a flare-by-flare basis on the
entire dataset. We thus could not utilize such criteria in this work.

Despite the variety of available methods for sunquake detection, an attempt
to automate the detection process in order to reduce human e↵ort has yet to
emerge. To facilitate this, we construct a Machine Learning (ML) ready dataset
covering SC23 and SC24. To our knowledge, these specialized astrophysical data
products were not previously processed via ML techniques. This work takes the
first steps in this direction and describes the components of several ML-enhanced
detection models, as a result of an extensive array of experiments centered on
Representation Learning techniques. See Bengio, Courville, and Vincent (2013)
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for a review of these techniques. We discuss findings from our experiments and
identify challenging aspects.

This work is structured as follows: Section 2 describes the methods used
for data ingestion, pre-processing, holography analysis, and preparation for ML
algorithm ingestion. The ML methodology is described in detail in Section 3, in
preparation for Section 4, where particularities and limitations of two detection
models are presented along with an analysis of current results on both known
and tentative newly-detected sunquake events. Lastly, Section 5 summarizes
the discussion of models limitations and main results, and suggests avenues of
interest for future development. Furthermore, in Appendix A -D we expand on
additional methods and more standard methodological approaches that have
been explored while pursuing the task at hand that have not been included in
the final proposed solution.

2. Data Ingestion and Pre-Processing

2.1. The Helioseismic Holography Method

In this work, we have used the helioseismic holography analysis of Lindsey and
Braun (2000) to process raw data and identify the seismic emission during solar
flares from a selected list of sunquake events. The method is applied to pho-
tospheric Dopplergram maps such as those provided by the Michelson Doppler
Imager (MDI: Scherrer et al., 1995) onboard the Solar and Heliospheric Observa-
tory (SOHO: Domingo, Fleck, and Poland, 1995) and Helioseismic and Magnetic
Imager (HMI: Schou et al., 2012) onboard the Solar Dynamics Observatory
(SDO: Pesnell, Thompson, and Chamberlin, 2012).

In general terms, the helioseismic-holography technique is used to image
acoustic sources on and beneath the Sun’s photosphere. It reconstructs phase-
coherent p-mode acoustic waves that are observed at the photosphere into the
solar interior to render stigmatic images of the subsurface sources that have
perturbed this surface.

The solar interior refracts downward-going waves back toward the Sun’s sur-
face due to the temperature gradient below the photosphere leading to increasing
sound speed towards the interior. Helioseismic holography images a selected
area, in a way that is “broadly analogous to how the eye treats electromagnetic
radiation at the surface of the cornea, wave-mechanically refocusing radiation
from submerged sources to render stigmatic images” (Lindsey and Braun, 2000).
In order to obtain these images, holography uses a pupil defined as an annulus
with radius 15 – 45Mm, to image the focus situated a considerable distance
from the pupil and computes the “ingression”, [H�], and “egression”, [H+]. The
ingression, and the egression, are obtained from the wave-field at the surface,
[ ], through theoretical Green’s functions (Lindsey and Braun, 2000).

The egression power P(r,t)=|H+(r,t)|2 is extensively used in detecting or
studying acoustic sources and absorbers (Ionescu, 2010). This equation is used
to calculate the egression power for each pixel in the image. Therefore, using
this technique, we can create maps of egression power around ARs in order to
detect the seismic sources.
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Following Ionescu (2010), we employ a temporal selection criteria in which a
eight-minute duration of the egression power signature is required for a positive
sunquake identification due to an artifact of the truncation of the helioseismic
spectrum by a 2mHz pass-band. The egression power signatures that result are
temporally smeared to a minimum e↵ective duration of order

�t =
1

�⌫
=

1

2 mHz
⇡ 500 seconds. (1)

Other selection criteria using this technique concern the position of the source
as relative to the active region (AR), its intensity in terms of a 3� pixel enhance-
ment, and a clear increase–decrease type signal, or even more complex criteria as
suggested by Chen and Zhao (2021). For this ML-oriented work, where absolute
intensity measurements tend to lose significance, the most important applicable
constraint is the temporal selection criteria.

The band centered at 6mHz was chosen for this work because it showed a
much higher signal-to-noise ratio compared to other bands (Donea, Braun, and
Lindsey, 1999) making it easier to detect the source (egression power in absolute
terms ⇡ 4.1 times that of the 6mHz mean quiet Sun, Donea, Braun, and Lindsey,
1999).

2.2. Sunquake Identification and Dataset Creation

For this work, we produced a sunquake dataset spanning two solar cycles, SC23
and SC24, using the holography method described above. To identify potential
sunquakes candidates, we have used the curated lists of Besliu-Ionescu et al.
(2012) for SC23, totaling 15 MDI observed events, along with the positive
holography identifications from SC24 of Sharykin and Kosovichev (2020) totaling
80 events. In the case of SC24, multiple sunquakes have been identified in the
same AR, but at di↵erent times during its disk crossing. For the complete list
and parameters of sunquakes that were positively identified and marked “+”
by Sharykin and Kosovichev (2020) (see their Table 1). To create our dataset,
we used temporal cubes of 5 – 7mHz holography-acoustic-egression maps binned
to resolutions of 256 ⇥ 256 pixels that lead to approximately 1.500 in physical
resolution leading

to ⇡ 200 ⇥ 20000 acoustic maps. This binning is required in order to get
adequate signal-to-noise ratios necessary for a positive sunquake detection. For
all positive events in both SC23 and SC24, we have created acoustic datacubes
spanning three-hour intervals, as required by the holography methodology, with
observations starting approximately 1 – 1.5 hours before the sunquake inducing
flare, and following for an additional 1.5 – 2 hours. The data cadence of MDI
(SC23) is 60 seconds, while the data cadence of HMI (SC24) is 45 seconds. The
before and after temporal limits are flexible in order to not bias an ML analysis
by generating negative and positive frames at the same temporal location in each
individual cube. This setup generates severely imbalanced datasets, where only
3 – 4% of the observations contain expected sunquake signal. Small datagaps of
less than eight frames (<360 – 480 seconds < minimum e↵ective duration) have
been deemed safe to be interpolated in the cubes.
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The very high noise patterns outside ARs along with oscillatory moving
patterns that result from the holographic analysis (see Figure 1) make a very
challenging dataset. Because of this, we have not considered the number of
sunquakes in the two input lists to be definitive. Our curated positive events for
our ML-model training represent only the clearly identifiable and distinguishable
sunquakes that were inspected and annotated by us based on the sunquake de-
tection criteria discussed in Section 2.1. Adding to this, the holography analysis
on solar ARs is generally considered a convoluted process that requires manual
input. We have bypassed these limitations by creating a Sunpy Version 4.0.x
(The SunPy Community et al., 2020; Mumford et al., 2022) enabled batch script
where we have queried and downloaded magnetogram and dopplergram data
from the MDI and HMI repositories corresponding to the temporal slots around
our selected sunquakes. We then computed the central heliographic Stonyhurst
to Carrington position of the AR at the time of the sunquakes by retrieving and
interpolating data from the solarmonitor service (www.solarmonitor.org). The
positions were automatically ingested into the holography method along with
a set of other fixed parameters, enabling us to process the sunquake lists and
produce temporal cubes of acoustic egression power corresponding to each event.

The final acoustic datasets from both SC23 and SC24 that are employed by
the methodologies described below, are available in the following online Kaggle
SunquakeNet repository (Mercea et al., 2022). The repository also includes the
region selections resulting from manual identifications of sunquakes from Besliu-
Ionescu et al. (2012) and Sharykin and Kosovichev (2020). Individual frame
datasets ready for ML ingestion in JPEG format separated into positive vs.
negative sunquake detections spanning all utilized sunquake datacubes are also
included.

2.3. ML Dataset Creation

Before diving into the ML-driven methodology, we will first describe the pro-
cesses that data undergoes in preparation for model ingestion.

To create an ML-suited dataset based on the egression-power maps, frames
are extracted from the volumes into gray-scale 224 ⇥ 224 pixels PNG files and
a MinMax normalization is applied to each datacube. The obtained images
are labeled as follows. An image is considered to be positive, i.e. to contain
a sunquake, if the corresponding frame in the egression power map cube shows
the presence of a sunquake, and negative otherwise. To identify whether a frame
is positive, the starting time present in the egression power map file header is
used to describe a point in time and respectively, a corresponding frame range
for one sunquake. Based on this equivalence, the sunquake begin and end times
are correlated to frame indices. Figure 1 depicts six randomly extracted negative
and positive samples from the ML dataset.

One reason for dividing the volumes into 2D images lies in the small quantity
of event samples at hand, with only 15 volumes containing sunquakes recorded
in SC23, and 38 volumes containing sunquakes in SC24 annotated at the time
of this research. An additional 17 datacubes with no events are available from
SC23 but are not used in the proposed models due to already increased class
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imbalance. Moreover, 43 additional cubes from SC24 have been downloaded
and processed, but they present weaker and less-clear signatures, caused by
the noise threshold inside the ARs achieved via holography. In these cases the
manual sunquake identifications were less certain, where in few cases we are
unsure if recovering any helioseismic signal at all. As shown by Sharykin and
Kosovichev (2020), di↵erent events were sensible to di↵erent methods, where
here we only employed holography. Thus, these events were dropped from the
analysis as our main scope revolves around the correct identification of clear
seismic signatures. Although this increases the imbalance, not including these
events in the training and validations of current preliminary models will ensure
we are not inducing incorrect information when testing di↵erent ML approaches.
In a subsequent project, including these less certain events will be precisely
the focus for fine-tuning the models, after identifying a suitable threshold for
applying holography.

By dividing the volumes, the sequence structure of the data is not disregarded,
as a significant part of the experiments, including the models in Section 4,
introduce a form of sequence modeling. A second reason behind this division
is the wider variety of deep learning methods available for 2D-image datasets as
opposed to movielike datasets.

From the sunquake catalog presented in Table 1, 53 of the listed events
are used for model training and validation, marked with “+”. An additional
four datacubes without annotated sunquake signatures are used for testing and
analysis, marked with “-”. These latter sets are used to analyze the results for
the proposed approaches, with the goal of identifying emissions that are too
weak to be detected using conventional methods.

The level of imbalance in the obtained ML dataset is a challenging aspect.
By combining both SC23 and SC24 data, the quantity of positive images in the
dataset totals 845 (205 + 640) while the negative count totals 13,055 (3891 +
9164). Some “blank” all-black bu↵er frames in datacubes are of course excluded
from the counts and analysis.

3. Machine Learning Approaches for Sunquakes

To derive a detection model able to capture sunquake signatures, several exper-
iments are performed using ML techniques of increasing complexity. These can
be divided into two phases: Methods described in Appendix A and Section 3.4
are trained on SC23 data; Methods in Section 3.1 are trained using the combined
SC23 and SC24 datasets, based on the process presented above (Section 2.1).
The decision to combine the datasets is based on preliminary findings, which
indicated that given the low data regime, the amount of AR morphologies that
an ML model is exposed to needs to be increased such that the model is able
to shift the focus from learning representations of ARs to learning sunquake
signatures.

The main ML metrics that will be used to judge model performance are:
Precision ( TP

TP+FP ), Recall ( TP
TP+FN ), F1-Score ( 2PrecisionRecall

Precision+Recall ) and Accuracy

( TP+TN
TP+FP+TN+FN ). The TP and FN labels denote true and false positives, and
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Table 1. Sunquake events between 09 July 1996 and 15 January 2005 from
SC23 and between 15 February 2011 and 07 September 2017 from SC24. Events
marked with “+” are used in training and validating the proposed Representa-
tion Learning models. Events marked with “-” are part of an additional dataset,
and not sunquake annotated, and are used for post-learning testing.

Event SQ Start Frame Index SQ End Frame Index Labeled

09 July 1996 09:01 69 87 +

06 June 2000 14:57 47 66 +

24 November 2000 04:54 62 76 +

06 April 2001 19:13 21 36 +

10 April 2001 05:01 47 56 +

24 September 2001 09:35 38 48 +

15 July 2002 19:52 60 74 +

23 July 2002 00:27 30 43 +

21 August 2002 05:24 43 58 +

23 October 2003 08:45 34 42 +

28 October 2003 11:00 170 178 +

29 October 2003 20:35 138 149 +

16 July 2004 13:48 56 69 +

13 August 2004 18:07 15 24 +

15 January 2005 00:33 40 54 +

15 February 2011 01:44 92 104 +

18 February 2011 09:55 107 117 +

18 February 2011 12:59 103 111 +

07 September 2011 22:32 82 105 +

24 September 2011 20:29 90 99 +

25 September 2011 08:46 - - -

26 September 2011 05:06 129 139 +

30 December 2011 03:03 - - -

05 March 2012 19:27 89 109 +

06 March 2012 04:01 95 110 +

06 March 2012 07:52 82 94 +

06 March 2012 12:23 106 122 +

09 March 2012 03:22 88 103 +

08 May 2012 13:02 - - -

09 May 2012 21:01 93 114 +

10 May 2012 04:01 - - -

04 July 2012 09:47 112 130 +

04 July 2012 14:35 88 103 +

05 July 2012 03:25 92 106 +

05 July 2012 11:39 89 104 +

05 July 2012 20:09 87 106 +

06 July 2012 01:37 82 96 +

06 July 2012 13:26 84 100 +

24 October 2013 10:30 89 98 +

06 November 2013 13:39 86 103 +

07 November 2013 03:34 84 105 +

08 November 2013 04:20 85 104 +

10 November 2013 05:08 87 103 +

02 February 2014 06:24 SQ1: 90, SQ2: 105 SQ1: 108, SQ2: 114 +

07 February 2014 10:25 86 120 +

09 November 2014 15:24 88 102 +

03 January 2015 09:40 89 106 +

10 March 2015 23:46 95 109 +

11 March 2015 16:11 90 105 +

22 August 2015 21:19 89 97 +

28 September 2015 14:53 85 104 +

30 September 2015 13:18 85 97 +

04 September 2017 20:28 86 102 +

05 September 2017 01:03 86 100 +

06 September 2017 08:57 91 111 +

07 September 2017 10:11 86 101 +

07 September 2017 14:20 99 115 +
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Figure 1. A compilation of six 8-bit scaled intensity data samples from the ML-prepared
dataset. Row titles indicate the label and column titles indicate event identifiers and frame
indices.

TN , FN the true and false negatives. GT will be used to denote Ground Truth,
or real label.

Because the data has domain specific particularities, learning useful represen-
tations from the input has been a primary research goal. Initial experiments are
centered on less complex methodologies, starting with small scale Convolutional
Neural Networks (CNNs), which prove insu�cient. Transfer Learning from Ima-
geNet (Deng et al., 2009) with common CNN architectures also failed to converge
to fully reliable performance metrics. One possible explanation is that ImageNet
contains natural images that are quite di↵erent from our data, and consequently,
the features captured by the pre-trained networks are not su�ciently relevant
for our task characterised also by a limited and imbalanced dataset. For this
reason, we decided to first move towards Representation Learning in the form
of AutoEncoder approaches, which also rendered less-satisfactory performance.
These are described in more detail in Appendix A.

In this paper, we focus on Contrastive Learning (CL) methods and results,
covering supervised (that rely on annotations) and unsupervised (that do not use
annotations) objectives, recurrence techniques and observations on relevant data
augmentations. The next subsections describe these experiments and methods,
and highlight the identified challenges and limitations.

3.1. Contrastive Learning Approach

Experiments performed on the holography data indicated that the main chal-
lenges in sunquake classification include class imbalance, low data regime prob-
lems, and the inability of AutoEncoder-based approaches to capture the relevant
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sunquake features in the latent distribution. As a result, the second phase of the
experiments is focused on a more recent computer-vision methodology, namely
the CL. Cao et al. (2021) argue that, as opposed to AutoEncoder methods, the
goal of CL is not that of finding exact distributions for data samples, but rather
about discriminating between di↵erent samples.

CL initially emerged as a self-supervised method for learning from visual
representations and showed relevant improvements over previous state-of-the-
art models, matching supervised network performances (Chen et al., 2020). The
goal of CL is intuitive: train a network to generate close latent space represen-
tations for pairs of data points that are similar to one another and distinctive
representations for dissimilar pairs.

Recently, a supervised approach to CL has been proposed by Khosla et al.
(2020), where clusters of points belonging to the same class are pulled together
in the embedding space, while simultaneously pushing apart clusters of samples
from di↵erent classes. Figure 2 o↵ers an overview of the di↵erences between
self-supervised and supervised CL approaches.

The literature presents a number of contrastive loss functions: max margin
loss (Liu et al., 2016), triplet loss (Weinberger, Blitzer, and Saul, 2005), multi-
class N-pair loss (Sohn, 2016), SimCLR loss (Chen et al., 2020), but the main
idea behind this method of learning has not changed drastically over the years.

Appendix B.1 describes experiments where a fully self-supervised approach
is pursued with the goal of avoiding the problems arising from class imbalance.
On average, results of this approach are similar to those of the AutoEncoder
methods. We note that this approach is not able to capture many relevant fea-
tures. Appendix B.2 describes experiments with a supervised-contrastive model,
where we find that some relevant and sometimes distinct features are captured.
Metric improvements over the self-supervised model are encouraging but the
class imbalance factor still posed a great impact on the classification results.

To tackle this, we combine the Self-Supervised and Supervised contrastive
models in a unitary pipeline using a Two-Step approach. Self-supervised and
Supervised contrastive loss functions are shown in Equations 4-5 and are de-
scribed in detail in Appendices B.1 and B.2 respectively. For the self-supervised
contrastive training, positives are upsampled with geometric transforms. For the
supervised part, class weighting is introduced in the contrastive loss, consistent to
the equations of Zhong et al. (2022) in order to tackle the imbalance e↵ect. Under
this loss, where the tailed class samples are assigned larger weights, the model
achieves the highest precision. The updated weighted supervised contrastive loss
is:

li =
X

i2I

�wyi

|P (i)|
X

p2P (i)

log
e
sim(zizp)

⌧

P2N
k=1 mask[k 6=i]e

sim(zizk)
⌧

, (2)

wyi =
1� �

1� �Nyi
. (3)

where � 2 [0, 1) is a hyper-parameter and 1
wyi

is the e↵ective number of samples

for class yi. In our work, a value of 0.9999 is used for � to halve the e↵ective
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Figure 2. Self-Supervised (left) and Supervised Contrastive Learning (right) Visualization
for sunquake image datasets. The self-supervised contrastive loss contrasts the anchor and an
augmented version of it (positive) against all other samples (negative), regardless of class. The
Supervised contrastive loss contrasts the anchor, an augmented version of it, and all the data
samples of the same class (positives) against all other samples (negatives).

number of negative samples. During training, Adam (Kingma and Ba, 2014) and
Stochastic Gradient Descent (SGD) are used as optimizers. The prior is quickly
diverging for the majority of experiments. SGD with momentum, weight decay,
and warm-up is found to generalize better.

ResNet-18, Resnet-50, and DenseNet-121 (Huang et al., 2017) backbones are
considered case by case, in an attempt to improve results by increasing model
complexity.

We note that a set of augmentations additionally play an important role in
convergence. These are discussed below. Two relevant models extracted from the
above experiments and their results are analyzed in depth in Section 4.

3.2. Data Augmentation and Sampling

To lower the impact of the class imbalance, we experiment with di↵erent trans-
forms for augmenting our input data, including: center and random crops, sharp-
ness, color jitter, posterize, invert, auto contrast, solarization, Gaussian blur,
normalization, vertical/horizontal flips, and random rotations of 90°, 180°, 270°.
In Appendix C we detail the main transforms that are applicable, following the
categories of transformations described by Yang et al. (2022). We comment on
the applicability of each of these augmentation approaches as not all of these
usually standard transforms are useful for our particular task, some being detri-
mental to the learning process. We iterate below only custom transforms, that
are applied to our sunquake data in addition to the more generic approaches
illustrated in Appendix C:
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i) Custom Time-Based Mixing: When experimenting with various time pre-
serving techniques, we introduce an augmentation that combines subse-
quent gray-scale frames into a single ’3D-like’ sample. Channels are repre-
sented by consecutive frames. This technique enables the contrastive model
to better focus on similarities between samples that are close to one another
in both time and space. We remind the reader that sunquakes occur in
successive frame series.

ii) Custom Solarized Low Pass Filter: This method is a custom implementation
of a color space transform (Appendix C.5). Given that the process of ob-
taining seismograms (maps of distances traveled by the wave front) includes
a last step of applying a Fourier transform with respect to the azimuthal
angle (Kosovichev and Zharkova, 1998), we believe that an augmentation
based on such a transform may be useful in enhancing the sunquake details.
We apply a low pass filter followed by a solarize transform. The threshold
for both transforms is set to 50. We report that this mix of transforms
enhances high-frequency signals, so that sunquake features are amplified.
This enhancement is shown in Figure 3, where a more intense sunquake
spot is observed on the augmented images. One downside to this transform
is that it also enhances high-frequency areas that are not necessarily sun-
quakes. A more evident example for this is shown in the third image in
Figure 3. However, when using this transform with a 50% probability, the
contrastive loss no longer stagnates during training, as it does with other
transforms typically used in CL. While this statement applies to our data,
we can not draw general conclusions about its applicability. For example,
the use of this custom transform with the CIFAR-10 dataset revealed a
significant deterioration in the classification results (of ⇡ 20% in F1-Score).
Because we use this augmentation to better infer domain knowledge to the
CL approaches, we experimented with its limited applicability as a method
to explain the CL predictions in Section 4.3.

iii) Customized Random Erasing: Random erasing is detailed in Appendix C.6.
Here, we develop and apply a custom Random Erasing implementation in
order to provide a higher degree of label-preservation for our data. For this,
we propose a method for decreasing the probability of occluding a sun-
quake: instead of adding standard large-sized rectangle(s) of erased areas,
we augment with using multiple small erasing rectangles, of sizes covering
up to 4% of the original input image, with an up to 50% probability of
application. The smaller sized rectangles have a high probability of being
applied, while the large sized ones have a significantly lower probability.
For instance, 50% of the images have an erasing rectangle covering 1% of
the image. 5% of the images have an erasing rectangle covering 4% of the
image. Between zero and eight erasing regions may be applied to a singular
image (see the Contrastive: Positive image in Figure 2).
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Figure 3. Solarized low-pass filter applied to a selection of 8-bit intensity scaled frames from
the SC23 and SC24 dataset. Frame indices and events are mentioned in the column titles.

3.3. Recurrent Techniques

During the dataset-preparation process described in Section 2.3, the sequence
component of the input data is lost. We hypothesize that the main reason for the
modest results of single-frame approaches such as those of AutoEncoder-based
models (Appendix A) lies in the inability of the models to capture sunquake
signatures from only single data samples. Therefore, separate methods need to
be introduced to maintain the time-series structure of the data, as sunquake
signatures are only valid if visible at successive times and frames.

To reintroduce the sequence information, the output from the representation
model is taken and then combined with previous and next sample embeddings
using a sliding window of various temporal sizes. To interpret the clustering of
the encoded data points dimensionality reduction techniques are applied, specif-
ically Principal Component Analysis (PCA: Maćkiewicz and Ratajczak, 1993)
and Uniform Manifold Approximation and Projection (UMAP: McInnes et al.,
2018). The sliding window methodology is enhanced with the inclusion of the
UMAP components for each selected window. This approach, when applied to
Contrastive representations, yielded weak results (Macro Avg. Metrics: Precision
0.50, Recall 0.51, F1-Score 0.48, Accuracy 0.74), compared to its successor.

These more standard approaches still prove insu�cient for contrastive repre-
sentations. Losing the sequence information during image-based learning makes
it di�cult for the model to correlate consecutive samples of the same sunquake.
Not all single frames that should be positively identified are recovered, as con-
firmed by the predictions. As an answer to this, we propose the custom Time
Based Mixing transform described in Section 3.2.
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Figure 4. Simplified view of how convolutional filters are applied to the input throughout
a CNN based network. Starting leftmost, each input frame is rebuilt using the custom Time
Based Mixing transform using a three window input. Then, Convolutional and pooling layers
are applied to the transformed image. The rightmost output data product is flattened to the
target latent dimension.

For each model-input gray-scale sample i, a three dimensional image is cre-
ated, where the first dimension, that typically represents the channels, stores the
sample at index i�1, i and i+1. In this way, the convolution and pooling filters
applied to the sample throughout the models’ network capture the evolution
of the sample over a time period of three steps. A visualization of this process
is presented in Figure 4. The models described in Section 4 make use of data
constructed in this manner. This attempt of incorporating the time component
significantly improves results (see Table 2).

3.4. Object Detection

Because we currently do not employ additional methods for the explainability
of the contrastive models described in Section 3.1, the location of predicted
acoustic-emission sources and sunquakes is di�cult to infer. Thus, an additional
Faster Region-Based CNN (R-CNN) (Ren et al., 2017) based Object Detection
(OD) model is introduced to facilitate interpretation of the model outputs.

The OD model predicts regions as box coordinates around sunquakes in single
frame samples. We note that this model is not related or linked to the CL models
described above, and its sole purpose is that of facilitating potential locations
for sunquakes in frames where the CL models predict features.

As the OD model is trained only on region-annotated positive samples, it
predicts sunquake regions for the majority of samples at runtime. The role of
predicting the time of occurrence of sunquakes falls to the contrastive model. By
utilizing the predictions yielded by the CL model, positive frames (or positions
in time) are identified. Then, the OD model is used for extracting potential
regions (or locations) for these predicted frames, to reduce the manual e↵ort
when testing the model on unlabeled data.
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4. Results and Interpretation

This section presents our most notable results and findings. Following the ex-
periments described in Section 3.1, we train two CL sunquake detection models
with di↵erent particularities as described below. The outputs of these models
are combined with OD model outputs to derive both temporal and location
information of sunquakes for additional datasets.

Due to the large size of the models and the long training time, cross validation
is not performed, on account of computational requirements. A locked random
state is used at run time for reproducibility. We note that it is possible for the
results relying on this form of data preparation to su↵er changes on alternative
data shu✏es.

4.1. CL Models

In this section we provide the architecture and parameters of two CL models
and analyze their predictions. Significant implementation features are shared by
both models.

For both CL approaches, the combined SC23 and SC24 data are split during
load in an 80 / 20% manner into training and validation sets.

We apply the custom Time Based Mixing transform to the entire dataset,
followed by the Custom Low Pass and Solarize transforms with a threshold of
50 and with a 50% probability. Then, we randomly apply one single positional
transform out of horizontal or vertical flip, 90°, 180°, or 270° random rotations,
with a probability of 50%. Finally, we apply the Random Erase transform
as described above, generating up to eight gray erasing rectangles of varying
proportions.

Before moving on to describing the models, we must emphasize the problem
of external bias induction. This occurs when, willingly or not, the model is
presented with additional information from the exterior that facilitates training
but may impact the reliability of results. From our experiments, we identified
two biases that impose a level of risk.

Firstly, when loading the data, if the entire dataset is shu✏ed before per-
forming the split, di↵erent samples associated with the same event may appear
in both training and test data, inferring external information to the model
regarding previously seen ARs.

Secondly, when upsampling with geometric transformations, even though they
are also applied at runtime to all samples, a transformation bias is induced
to the model, making it more inclined to predict sunquakes for geometrically
transformed samples. When performing inference, no geometric transformations
should be applied to the input data so as not to a↵ect the reliability of the
predictions.

The impact of such biases is not fully clear. To explain this, we prepared the
model in Section 4.1.1, which presents none of the above biases, to o↵er a clean
overview of baseline capabilities. Sections 4.1.2 and 4.3 will describe an in-depth
prediction analysis resulting from an impacted model. The analysis is performed
on the additional datasets, denoted with “-” in Table 1.
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4.1.1. High Precision and Accuracy CL Model with No Known Biases

To mitigate the shu✏e bias described earlier, we group the input data by event
and only perform shu✏ing after dividing the groups between train and validation
data. This assures that both split sets are self-contained in terms of included
ARs. To better illustrate, if we assume that the Nth frame of an event is present
in the training set, then so are all other frames belonging to that same event,
and none are present in the validation set.

We train a self-supervised ResNet-18 ImageNet-pre-trained CL model for 500
epochs on the SC23 and SC24 datasets (using positive upsampling), followed
by a weighed multi-head supervised contrastive model for another 100 epochs
(without upsampling). For the supervised model we used an encoding size of
512, a projection dimension of 128, and a temperature of 0.07. The first head
includes a linear layer, a ReLu activation function, and an output encoding layer,
while the second head is used for performing and monitoring classification during
training and consists of a linear layer.

We then take the resulting encodings for the training and test sets and pass
them through an extensive list of classifiers. Building upon the results shown in
Table 2, we further analyze the embeddings with respect to the predictions pro-
vided by the polygonal kernel SVC.When loading data to this model, we separate
events entirely between train and test data, and we infer the contrastive encoding
on raw images only, avoiding both the shu✏e and the transformation biases. To
further tackle imbalance, besides encapsulating weights in the contrastive loss
according to Equation 2, we use Smote Augmentation (Lemâıtre, Nogueira, and
Aridas, 2017) on the training data. We synthetically upsample positives with a
sampling strategy of 0.2, and down sample negatives with a sampling strategy of
0.75. By this, first the positive samples are increased so that they measure 20%
of the total count of the negative samples, and the negative samples are reduced
until the positive count is equal to 75% of the negative count, leading to 2753
negative samples and 2065 positive samples used for training the classifiers.

Performance of this model before and after applying Smote Augmentation are
provided in Table 2. We see improvements of up to 20% in precision, and a 1%
accuracy increase in SVC (poly). Logistic Regression seems to not be a↵ected
by this augmentation, which may be explained by how the dense minority-class
is distributed closely to the sparse majority-class, as depicted in Figure 5.

Although Table 2 shows a high precision score, recall is small with only 20
predicted sunquakes samples, out of which 6 are false positives. The test set
contains 11 sunquake events, listed in Table 3. As the table shows, seven events
are recovered by this model.

To further analyze the particularities of the correct predictions and to identify
the reason behind false positives, several characteristics of the embeddings are
analyzed, beginning with the UMAP clustering, cosine and euclidean distances,
and cosine similarities between consecutive frames. Using euclidean distance
provides almost identical results. Findings indicate

that there is a considerable di↵erence between the embeddings associated to
data in SC23 and those of SC24, indicating either that models may recognize
the di↵erent measuring instruments.
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Table 2. Macro Average performances of di↵erent classifiers over CL produced embeddings,
trained with and without SMOTE augmentation, on the SC23 and SC24 test data (2622
negative and 186 positive samples)

Classifier K-NN (Bagging) SVC (Poly) SVC (RBF) Logistic Regression SGD

Augmentation None SMOTE None SMOTE None SMOTE None SMOTE None SMOTE

Precision 0.63 0.65 0.66 0.84 0.49 0.59 0.64 0.64 0.54 0.62

Recall 0.54 0.54 0.54 0.54 0.50 0.54 0.54 0.54 0.54 0.54

F1-Score 0.55 0.55 0.55 0.55 0.49 0.55 0.55 0.55 0.54 0.55

Accuracy 0.93 0.93 0.93 0.94 0.93 0.92 0.93 0.93 0.89 0.93

Metric Avg. 0.662 0.667 0.67 0.715 0.605 0.65 0.665 0.665 0.627 0.66

Table 3. TP, FP, FN sum for SMOTE augmented SVC (poly) predictions and positive GT
count for each event in the SC23 and SC24 test data (2622 negative and 186 positive samples).
In the case of events where TP ⌘ 2, the model predicts the exact transition frames into and
out from the SQ

Event Counts Event Counts

Date TP FP FN GT Date TP FP FN GT

09 July 1996 09:01 0 0 19 19 04 July 2012 09:47 2 0 17 19

06 April 2001 19:13 0 0 16 16 06 July 2012 13:26 2 0 15 17

24 September 2001 09:35 0 0 11 11 08 November 2013 04:20 2 0 18 20

23 July 2002 00:27 0 6 14 14 11 March 2015 16:11 2 0 14 16

05 March 2012 19:27 2 0 19 21 28 September 2015 14:53 2 0 18 20

06 March 2012 07:52 2 0 11 13

In Figure 5, a UMAP plot is presented, depicting on the two axes, synthetically
extracted features based on the contrastive embeddings. The correctly predicted
samples are visibly clustered at the tip of the other points, in the lower right-hand
corner. FP are grouped together very close to TP, which is expected considering
the use of a polygonal kernel during classification.

At a first glance, an evident issue with the embedding clustering lies in the
distribution of FN samples, which are randomly distributed alongside the TN.

Figure 6 shows the measured Cosine Distances between consecutive frames, as
a non-outlying plot of a successfully recovered sunquake in the 06 July 2012 13:26
event from the test set. We observe that the predicted frames corresponding to
the recovered events are the leftmost and rightmost margins of the sunquake. A
maximal Cosine Distance between the embedding vectors outputted by the CL
component of our model appear between frames 83 – 84 and 100 – 101. The colors
indicate the model’s predictions with respect to each frame’s embedding vector.
These highly distanced frames are exactly the human-identified transitions into
and out of a sunquake. This high cosine distance is considered to be the main
reason behind the model’s positive prediction for these transition frames. We
note that all of the recovered sunquakes in SC24 maintain roughly the same
characteristics.

We attempt to justify this behavior by pinpointing that for this experiment,
when training the CL ML model, each input data sample is augmented with the
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Figure 5. The predictions of the High Precision and Accuracy model, on the test set (20%
of the SC23 and SC24 data), colored by their prediction correctness and clustered by UMAP
components.

custom Time-Based Mixing transform. We hypothesize that because of this, the
embedding is capable of capturing a gradient in the intensity of the sunquake
region between the channels of an individual sample. Further increasing the
number of used channels might improve this result.

To understand why the immediately nearby frames located right before and
after a sunquake are not also predicted as positives in spite of the visibly large
cosine distance that they also present, we look into means and medians, sample
level standard deviation, and embedding vectors di↵erence from the mean. All
these characteristics indicate a typical behavior for immediate pre- and post-
quake frames as compared to other event frames, and a more evident discrepancy
for quake marginal frames.

An example of this behavior is depicted in Figure 7.
We can easily see that the TP embeddings have a much lower mean than the

adjacent ones. This behavior is also occurring in the other characteristic plots,
but to a less evident extent.

There are four events for which the model is not able to identify correct
sunquake frames, as seen in Table 3. However, the model does show common
behavior when marking positives with respect to the cosine distances between
consecutive frames. For example, in the 23 July 2002 00:27 event, the model pre-
dicts a shift in the gradient intensity at frames 170 – 173 and 233 – 235, but this
is not due to any known sunquake. This can result either from an abnormal noise
pattern, or from events that were not visually identified by human observers.

Lastly, we apply this model to the data associated to the additional datasets
marked with “-” in Table 1. For these four unlabeled events, the predictions are
as follows.

For 08 May 2012 13:02, one sunquake is predicted, around frames 180 – 188.
This will be analyzed in more detail below. For 30 December 2011 03:03, a
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Figure 6. Cosine Distances computed between consecutive frames’ embedding for the 06 July
2012 13:26 event in the SC23 and SC24 test data, colored by prediction correctness. The x-axis
is represented by the frame index for this event, and the y-axis denotes the Cosine Distance
value.

significant number of frames are predicted as sunquakes, which, given the high
precision of this model, indicates that the dataset might be too di↵erent from
those previously seen. Visually, the AR does not seem that clear with respect
to the noisy quiet-sun area around it. One sub-interval of positive predictions is
analyzed in depth below. For 10 May 2012 04:11 and 25 September 2011 08:46 no
sunquakes are detected. Each of the additional sets should have observation of
one Sunspot, as retrieved from our literature source (Sharykin and Kosovichev,
2020, Table 1).

4.1.2. High Metrics CL Model with Shu✏e Bias

We train a Supervised CL model with a DenseNet-121 ImageNet-pre-trained
backbone, batch normalization, dropout, global average pooling, temperature of
0.1 and an encoding and projection of size 20 on the SC23 and SC24 dataset (us-
ing positive upsampling) for ⇡50 epochs. This model encapsulates the shu✏ing
bias, in that it is trained on the fully shu✏ed SC23 and SC24 dataset, at sample
level. The encoding produced by this model is used to perform the classification.
For this, similar to the previous model, an SVC classifier with a polygonal kernel
is chosen.

This model comes as a significant improvement to its predecessor in terms of
metrics, which are presented in Table 4. Despite the boost, this model introduces
a level of uncertainty due to the present bias related to data shu✏ing. To train
the model, we modify the data loader so that data are no longer grouped by their
corresponding event date before the split. Hence, after shu✏ing, the training and
validation set may contain frames belonging to the same initial cube, such as
the Nth frame belonging to event 06 April 2001 19:13 residing in the training
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Figure 7. Means for each frame embedding vector for the 06 July 2012 13:26 event in the
SC23 and SC24 test data, colored by prediction correctness. The x-axis is represented by the
frame index for this event, and the y-axis denotes the embedding mean value.

Figure 8. The predictions of the High Metrics with Shu✏e Bias model, on the test set (20%
of the SC23 and SC24 data), colored by their correctness and clustered by UMAP components.

set, and the N +Kth frame residing in the test set. This modification facilitates
the model’s ability to produce meaningful embeddings for test data, as the same
AR might be present in the training set samples.

Figure 8 shows clustering of the embeddings produced by the model for the
test set. The distribution is quite sparse, but there is a clear separation between
the positive and negative class. Falsely predicted samples are tightly coupled in
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Figure 9. Cosine Distances computed between consecutive frames’ embeddings vectors for the
06 July 2012 13:26 event in the SC23 and SC24 test data, colored by prediction correctness.

between both clusters, thus making it di�cult for the model to clearly classify
them.

In spite of the shu✏e bias this model presents plots of cosine distances between
consecutive frame embeddings, as that in Figure 9, maintain the characteristics
of those in the high-precision model described earlier in Section 4.1.1.

Common behavior displayed between the two di↵erent models indicates that
aspects such as embedding means and cosine distances are relevant during the
process of learning the given task. It also validates the assumption that by
using the custom Time-Based Mixing augmentation described in Section 3.2,
transitions to and from a sunquake are adequately captured by CL models.

This particular model presents no weighting at the CL level, indicating that
models are much more easily trained on sample-level shu✏ed data. Even though
this model appears to lack imbalance impediments, we provide a comparison
between classification with and without SMOTE augmentation in Table 4. An
improvement in F1-Score up to 30% is noted for K-NN and SVC (RBF), but
Logistic Regression seems to su↵er from the augmentation, with a 6% decrease
in precision, as analogous to the no performance gains observed for logistic
regressors in Section 4.1.1. The SVC (poly) which is the top average scoring
SMOTE-based classifier gains a small 1% improvement in precision and recall.

4.2. OD Model

This section provides the validation results of the OD model for both SC23
and SC24 test data. The model was trained on 80% of the positive events in
SC23 using a Faster R-CNN architecture and a ResNet-50 backbone, pre-trained
on ImageNet. This selection is due to the limitations of MDI. The instrument
was sensible enough to only capture stronger sunquake events, leading to a
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Table 4. Macro Average performances of di↵erent classifiers over CL produced embeddings,
trained with and without SMOTE augmentation, on the SC23 and SC24 test data (2622
negative and 186 positive samples)

Classifier K-NN (Bagging) SVC (Poly) SVC (RBF) Logistic Regression SGD

Augmentation None SMOTE None SMOTE None SMOTE None SMOTE None SMOTE

Precision 0.97 0.80 0.97 0.98 0.99 0.94 0.97 0.91 0.91 0.89

Recall 0.54 0.96 0.96 0.97 0.86 0.99 0.98 0.99 0.94 0.93

F1-Score 0.55 0.86 0.97 0.97 0.91 0.96 0.98 0.95 0.94 0.93

Accuracy 0.94 0.95 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98

Metrics Avg. 0.750 0.892 0.947 0.977 0.935 0.97 0.98 0.96 0.942 0.932

selection bias in which most detected events have good signal-to-noise ratio
in the egression power maps. For this localization task, this choice has the
advantage producing a clean qualitative dataset, but also the disadvantage of
incompleteness.

The most commonly used validation metric in OD is the Intersection over
Union (IoU), which quantifies the degree of overlap between the predicted re-
gion box and the GT. Table 5 shows four types of metrics. The IoU metric
results (i) on our data appear underwhelming. This is because the manually
annotated regions vary in size between events, oftentimes including padding.
For this reason, we analyse the detections using additional metrics that better
capture the desired outcome of this model. We look at: correct signature coverage
(ii), the overlap of averages over di↵erent minimum sunquake duration (iii), and
the percentages of predicted boxes inside the GT (iv). Additional information
and visualizations on decreased IoU values in the case of correct detections for
the test data in SC24 are provided in Appendix D.

For SC24, the predicted IoU and the GT boxes overlap by⇡21.5%. An average
coverage of correctly localized sunquake signatures in 44.2% of the total positive
frames for singular events. This means that although sunquake locations are
recovered, not all consecutive frames corresponding to one event are successful
in capturing the signal. By manually reviewing predictions, we found that the
model tends to perform better for non-marginal sunquake frames, supported by
the fact that a significant part of the training data contains stronger examples.
Moreover, we test introducing the required minimum duration of predicting the
sunquake signature in the same spot. We find that while increasing the minimum
duration time, the average percentage of identified signatures for singular events
decreases down to 39.3%.

We assume the 44% and 62.6% event-level average of correctly marked sig-
nature regions for SC24 and SC23, respectively, to be su�cient for our current
goal of enhancing the CL model predictions with a probable location component.
Importantly, we note that the currently described OD model should not be
considered adequate as a standalone detection tool.
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Table 5. Event-level OD Model performances for capturing sunquake signature
boxes for the positive samples in SC23 and SC24 test sets.

Metric SC23 Data SC24 Data

(i) IoU avg. 29.5 % 21.5%

(ii) correct-signature coverage 62.6% 44.2%

(iii) min. duration 1 frames: correct-signature detections avg. 100% 84.8%

(iii) min. duration 4 frames: correct-signature detections avg. 75% 63.6%

(iii) min. duration 6 frames: correct-signature detections avg. 75% 45.4 %

(iii) min. duration 8 frames: correct-signature detections avg. 75% 39.3%

(iv) frame-level predicted boxes included in GT 30% 20%

4.3. An Analysis of Sunquake Detections on Additional Datasets

Figure 10. The predictions of the High Metrics with Shu✏e Bias model, on SC24 additional
dataset, colored by their prediction value and clustered by UMAP components. 0 represents a
negative prediction and 1 represents a sunquake prediction.

For the aforementioned “-” events in Table 1, the CL model predicts a total
of 93 positive frames and 923 negatives. The OD model described in Section 3.4
is then applied to the positively predicted frames to extract potential regions.
Figure 10 shows the clustering of embeddings, colored by prediction. Although
slightly di↵erent in distribution, the UMAP is quite consistent in interpretation
to the test set clustering shown in Figures 5 and 8 discussed above.

The predictions are as follows: For the two datasets of 10 May 2012 04:11 and
25 September 2011 08:46 frame 199 is marked, and frames 87 – 89 are marked
as sunquakes, respectively. Per our identification and selection criteria, one and
respectively three frames are insu�cient to justify a sunquake signature. An
analysis of the higher-atmosphere data showed no candidate eruptions. With
respect to the 08 May 2012 13:02 dataset, two sunquakes are predicted at frames
[22 � 33] and [180 � 180] in di↵erent locations. A cosine-distances plot is shown
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Figure 11. Cosine Distances computed between consecutive frames’ embedding vectors for
the 08 May 2012 13:02 dataset of SC24, colored by their prediction value. 0 represents a
negative prediction and 1 represents a sunquake prediction.

for this event’s embeddings in Figure 11. As similar to the test events, the
medium-high and high values of this characteristic for sunquake margins are
maintained for both detections, respectively. The first prediction proved to be
a false positive. The second sunquake is predicted by both CL models, and it
is further scrutinized below. The 30 December 2011 03:03 dataset contains six
sunquake identifications. Five cases either proved inconsistent with the temporal
detection criteria, or the OD did not successively converge on the same location
for the entire CL duration. The last detected event [15 � 22] is given further
consideration below.

We aimed to enhance the level of explainability of the contrastive model,
in the absence of other implemented methods, by additionally utilizing our
most impactful augmentation, the Solarized Low Pass Filter custom transform,
alongside the OD approach.

4.3.1. 08 May 2012 13:02 Prediction Analysis

In Figure 12 we observe the predicted 08 May 2012 13:02 sunquake at frames
[180 � 188] using both detection approaches. Both models described in Sections
4.1.1 and 4.1.2 predict a sunquake occurrence in this temporal interval. Starting
from this, a manual review of the respective regions is performed to identify
sunquake presence and evaluate the behavior of the algorithms used. The OD
identification shows a feature at position [80 , 135] (Figure 12 rows 3 and 4).
The detection marked with a purple box maintains a fixed position starting
from Frame 181, close to the center of the AR complex. The Solarized Low
Pass Filter presents a spot of gradually increasing intensity on the right-side
region at position ⇡ [200 , 100] (Figure 12 rows 1 and 2). The other features
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Figure 12. Position of identified acoustic signatures based on Solarized Low Pass Filter and
OD Regions for dataset 08 May 2012 13:02, at positively predicted frames [180 – 188). 8-bit
intensity scaling is used.

are too short-lived to be classified as sunquakes. These are at two completely
di↵erent locations, where each appears consistent temporally with the CL model
detection.

To disentangle this aspect, we use higher atmosphere observations from SDO’s
Atmospheric Imaging Assembly (AIA: Lemen et al., 2012) and from the Reuven
Ramaty High-Energy Solar Spectroscopic Imager (RHESSI: Lin et al., 2002) to
probe the eruptive and high-energy signatures that are usually associated to
sunquake activity. The AIA data calibrated to level-1 data are obtained from
the JSOC (jsoc.stanford.edu) around the predicted acoustic-source time intervals.
The RHESSI high-energy source location is computed using the Clean algorithm
(Hurford et al., 2002) by integrating the signal in the 6 – 12 eV range measured
around times of the maximum X-ray emission for each event.

We explore the emission of the solar atmosphere during the times indicated
by the OD kernel detection. For this flaring event, the most significant signatures
are observed in the AIA 304 Å emission originating in the solar chromosphere
and transition region, as presented in Figure 13. The OD detected position (cyan
square) appears to overlap the footpoints of a mostly chromospheric flaring event.
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Figure 13. Flaring activity as seen in the AIA 304 Å channel related to the 08 May 2012
13:02 dataset. The observation time for each AIA frame is included at the bottom of each
frame. For the temporal interval when the OD kernel is identified, its position is marked by
a cyan box in the corresponding frames. The RHESSI high-energy X-ray 6 – 12 eV signature
location is shown as the green contours for the time of the maximum flaring.

The weak RHESSI X-ray 6 – 12 eV source (green contours) is found to match the
location of the AIA flaring. We note that the flaring appears to be visible for
more frames, beyond the OD-marked interval. This is consistent with the fact
that the signal in the egression power map is generated by the impulsive initiation
of the flaring, while afterwards the chromosphere continues to radiate the gener-
ated energy. The second location inferred from the Solarized Low Pass Filter is
discarded, as we could not find any clear eruptive or high-energy manifestation
that can be associated with this location and time.

4.3.2. 30 December 2011 03:03 Prediction Analysis

For our second example dataset, 30 December 2011 03:03, the Solarized Low Pass
Filter is shown in Figure 14, while Figure 15 shows the hot AIA 94 Å channel
in which most of the emission is recorded for this particular flare. The locations
of the OD kernel (cyan) and the RHESSI source (green) are also included. This
event is occurring very close to the solar limb, so projection e↵ects are non-
negligible in both the AIA emission and in the data used for acoustic-signature
identification. The egression-power maps are de-projected to remove the solar
rotation, while the AIA and RHESSI are significantly influenced by projection
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Figure 14. Position of candidate sunquake signatures based on Solarized Low Pass Filter and
OD Regions for dataset 30 December 2011 03:03, at positively predicted frames [15 , 23]. 8-bit
intensity scaling is used.

e↵ects. In addition, the egression-power maps are mapping the solar photosphere,

while the AIA 94 Å channel is mapping the very high corona. Thus, we explain

the small mismatch of about 1000 – 1500 between the source in the egression-power

maps and the AIA and RHESSI data as a product of superposing all these e↵ects.

In this case, the Solarized Low Pass Filter shown in Figure 14 did not capture our

small acoustic region of interest, and has not identified other stronger acoustic

sources with su�cient lifetimes for consideration. We note that the insu�cient

frames where the OD has consistently detected the flaring location (⇡300 sec-

onds), makes this event not fully compatible with a sunquake identification. This

aspect, when coupled with the small location mismatch and the high projection

e↵ects of the observation, makes this association less strong than in the case

of the 08 May 2012 13:02 dataset, but still relevant, at least with respect to

qualitative and prospective application criteria.
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Figure 15. Flaring coronal loops as seen in AIA 94 Å channel related to the 30 December
2011 event, with the position of identified OD kernel marked by the cyan box and the RHESSI
high-energy 6 – 12 eV signature location shown as the green contours.

4.3.3. Discussion

In both examples, we observe the AIA and RHESSI data to show eruptions
accompanied by high-energy X-ray emission with class ⇡ C1.0 at the approxi-
mate location of the OD source during the same temporal intervals of the CL
predicted sunquake intervals in both CL models. We tentatively hypothesize,
by conjecture, that these source locations might be desiderated weak acoustic
emission signatures that are produced by less powerful eruptions, even weaker
than the source discussed by Sharykin, Kosovichev, and Zimovets (2015).

Figure 16 presents a more detailed analysis of the acoustic emission accompa-
nying the AIA and RHESSI flares. The a) and b) panels show that both events
are visually identifiable in egression power maps. The total emitted power over
the three-hour background in ARs (P/Pavg) exceeded 7 and 14 in individual
locations for the 31 December 2011 and 08 May 2012 events, respectively. The
c) and d) panels show the P/Pavg integrated over di↵erent kernel sizes over
the three hours of observation of each AR. The more compact kernels (purple)
maintain detection levels of above 4�ar in both events discussed above. We note
that detection limits would decrease even further to a ⇡ 3�qs level if evaluating
the temporal median signal in regions outside the less noisy AR shadows.
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Figure 16. Panels a) and b): Background normalized acoustic-emission power maps in the
4 – 7mHz band at the maximum of emission for the two detected weak sources. Panels c) and
d): Evolution of the measured power with respect to background over two highlighted regions
over our standard 3 hour dataset interval, one strictly including the acoustic kernels (purple),
the other also containing some background contribution (light blue). The green vertical line
corresponds to the time of maximum RHESSI emission, and the horizontal red line marks the
interval when the retrieved signal is over the 3� level. Panels e) and f): The highlighted
purple regions are tracked for longer temporal intervals to better constrain the background
signal. The original 3 hour intervals are highlighted in blue.

Following the discussion of Chen and Zhao (2021), we assess that these detec-
tions represent very weak sources. In addition, we note that in general a modest
4�-like detection does not completely exclude us from the risk of spurious signal.
To further constrain the detection, we additionally track the kernels over longer
temporal intervals of the order of one day for each event (panels e) and f)). Both
discussed detections remain the most dominant features in the tracked regions,
with detection levels reaching a more optimistic 5�ar in this extended temporal
noise statistics. These concerns are also somewhat alleviated by the temporal
consistency, and the sets of clustered pixels manifesting similarly. Lastly, when
following the temporal evolution curves in panels c) and d) during the peak
acoustic emission, we find that the 2011 event maintains a consistent > 3�ar

detection for ⇡ 495 consecutive seconds, on the edge of the detection threshold
set by Equation 1. The 2012 event falls marginally under the established thresh-
old, where a > 3�ar detection is maintained for ⇡ 450 seconds. Thus, although a
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set of stacking correlations between reasonable acoustic power, co-temporal AIA
flaring, along with qualitatively overlapping RHESSI sources present a consistent
set of evidence, we stress that these two aforementioned events would be hard
to classify as bona-fide sunquakes when following a traditional holography based
helioseismology analysis, as a number of methodological and statistical criteria
(detection limit, temporal and spatial correlations, kernel size, temporal length,
etc.) can hold up to only a qualitative level. These limitations can originate from
any combination of instrumental, ML model, interpretation, or statistics e↵ects.

We also remind the reader that our findings represent only a footing, upon
which we encourage further exploration, as it is based on only two out of four an-
alyzed datasets that contained one apparently positive example each. Preparing
and ingesting a large dataset of acoustic emission of ARs that do not formally
contain known sunquakes is required alongside more thorough detection limit
statistics in order to confirm this result. Such a dataset should not be included
in the training/validation and used only for highlighting temporal and spatial
location of potentially unknown acoustic events. When using only HMI, such
type of study can also help with establishing a lower flare energy detection limit
when concerning ML applicability.

Although the Solarized Low Pass Filter improves detection metrics as has
been demonstrated in Section 3.2 and exemplified in Figure 3, we find it is prone
to introducing artifact regions into outputs when used in a stand-alone manner
for explainability, as it is agnostic of our imposed criteria. For example, due to
current holography limitations, the acoustic sources usually need to be inside
the ARs to be identifiable. We thus deduce that although using this custom
augmentation is tremendously beneficial to the overall training and validation of
solar acoustic-emission datasets, careful consideration should be put into its
explainability applications and sources that it might locate, as they have a
significant chance to be FP. As a corollary, we note that this augmentation
will increase the FP metrics of a trained model. This aspect again illustrates the
complexity in interpreting these observations in a criteria agnostic ML fashion.

False detections such as the second location at frames [180 – 188] in event
08 May 2012 13:02 indicate that our current models are not very robust to
spurious correlations; for instance strong shifts in the gradient intensity in the
ARs shadow, which are essentially noise, are predicted as sunquakes. To alleviate
this, techniques that instruct the model to distinguish between false and correct
sunquake signatures need to be employed. As a first step towards this, we plan to
label our future datasets into multiple classes such as: strong SQ signature, weak
SQ signature, AR shadow intensity shift (not SQ), etc. These labels can then be
adopted in the CL methods to encourage producing sunquake representations
that are dissimilar to their unfounded lookalikes.

We reiterate that both identified acoustic-emission sources, although promis-
ing as potential applications, do not present the actual position of sunquake
identifications from the perspective of the CL models, which only provide the
temporal component. In the future, we will add the significant e↵ort required to
augment these trained models with a suite of CL-specific explainability features,
which will be able to extract positions directly from the model output.
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5. Conclusion

In this work, we presented a pedagogical approach on the application of ML
methodologies to acoustic emission image data of solar ARs. We constructed a
curated dataset of major sunquakes during SC23 and SC24, using the holography
method. An extensive list of representation-learning-centered ML experiments
are performed on this dataset, and two end-to-end models are analyzed from
a solar-physics phenomenological standpoint. Figure 17 o↵ers a step-by-step
visualization of the process behind the proposed methodological setup. The
following summary reiterates our most relevant findings and plans for future
improvements.

Figure 17. Process diagram of proposed solution. The gray-labeled augmentations represent
standard ML approaches, while the others depict custom transforms that were found to improve
the sunquake prediction model.

• Dataset construction: We created a comprehensive dataset of acoustic-
emission power maps for ARs that contain sunquake signatures. These
ML ready datasets are available in the linked repository. We emphasize
that characteristics of this dataset include a large imbalance factor of ⇡ 1
to 15 – 25 positive to negative ratio per dataset, very high noise patterns
outside ARs, and the presence of artefacts of oscillatory moving features
that result from the holographic analysis.

• Impact of custom augmentations: three domain-specific transforms were
developed and introduced. They significantly improve our CL-based models
performance on our di�cult dataset: customized Random Erase, Solarized
Low Pass Filter, Time Based Mix.

• Dissimilar embeddings for sunquake start and end times: Both discussed
CL models produce embeddings that have a high cosine distance towards
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their vicinity in the case of sunquake-transition frames, meaning that they
are adept at predicting sunquake start and end frames. This is facilitated
by the custom Time-Based-Mixing transform.

• Temporal and Spatial components: Our CL-trained models tend to predict
a high number of apparently FP detections, compelling us to enhance tem-
poral CL predictions with OD provided locations, to provide ML explain-
ability. We found correlations between weaker acoustic-emission sources and
solar eruptions accompanied by high-energy X-ray emission with spectral
class > C1.0 in AIA and RHESSI data. Two such examples are discussed in
depth, leading us to qualitatively hypothesize that our approach might be
usable to detect weaker acoustic manifestations than previously possible.
We stress that these two tentative detections could not be fully validated
using helioseismology. A statistical meaningful analysis will be pursued in
the future for a quantitative confirmation.

• AutoEncoder approach limitations: No autoencoder-based approach, re-
gardless of complexity, proved usable for our dataset. On a dataset by
dataset basis, basic clusterization of sunquake-positive signals could be
obtained for multiple sunquake individual datacubes.

• Custom augmentations as means of explainability: Although the custom
Solarized Low Pass Filter augmentation significantly improves both CL
models, we find it is not suitable for use a stand-alone tool for ML-output
explainability.

• Unmet minimum sunquake duration criteria: The model described in Sec-
tion 4.1.2 is also sensible in predicting shorter duration signals, be they
acoustic in nature or not. This is explained by configuring the Time Based
Mixing transform only on a series of three frames. In the future, we will
experiment with increasing this window. This was not currently possible
due to unfeasible computational costs.

• Unaddressed Spurious Correlations: False detections such as strong shifts
in the gradient intensity in the ARs shadow, which are essentially noise,
indicate that the models do not yet distinguish only true sunquake signa-
tures. We believe a more fine-grained separation in signatures is needed,
to encourage the models to produce sunquake representations that are dis-
similar to their unfounded lookalikes. The additional representations might
also prove to be of significant interest.

• Impact of Noise: Noise has long been the biggest enemy for astronomers
and data scientists. While the ML techniques and custom transforms we
introduced facilitate learning, they are not reliable for studying the e↵ects of
noise in their current state, as they all have a chance of obscuring the sun-
quake information. Moreover, conventional noise-reduction methods such
as mean or Gaussian filters are also not reliable because noise patterns in
egression-power maps are not distinctive enough from sunquake signatures.
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As noise continues to impose several challenges, additional pre-learning
steps for performing noise reduction are paramount in improving the results
and learning complexity. For this, we plan to repurpose the AutoEncoder
model such that the respective model learns AR shapes, instead of sunquake
signatures. This will also allow AutoEncoder training on additional datasets
that do not necessarily contain sunquakes. Following this, a pre-learning
step can possibly be applied to the input image to blacken out the area
outside the AR shadow, obtained from the model’s reconstruction, so that
the latent space needed for the main CL training may be largely reduced.
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Appendix

A. AutoEncoder approaches

As expected, MLPs, simple CNNs and Transfer Learning from ImageNet, which
were first applied, failed in achieving good performance due to the complexity of
the data, the highly imbalanced property and the transferred feature relevance.

For this reason, before attempting to apply CL and OD techniques described
in this paper, we decided to use Representation Learning in the form of un-
supervised, or self-supervised, AutoEncoder approaches. For these, a ResNet-6
(He et al., 2016) backbone is chosen, mainly because a more complex backbone
would easily overfit given the small dataset size of SC23.

In self-supervised learning, original annotations are disregarded, but task-
specific synthetic annotations are obtained from the data such that the learning
is still a supervised one.

AutoEncoders are neural networks that reduce the dimensionality of the data
and learn to reconstruct the data from the obtained encoding to a representation
that is as similar to the original data as possible.

This category of neural networks was first introduced by Hinton and Salakhut-
dinov (2006) as an improvement to dimensionality reduction techniques such
as Principal Component Analysis (Maćkiewicz and Ratajczak, 1993). AutoEn-
coders were later proposed as generative models (Kingma and Welling, 2014),
(Kingma and Welling, 2019), and further improved by Zhang et al. (2019) by
reducing training impediments given by inconsistencies between the data space
and the latent space. We decided to choose this approach as it deals well with
noisy data, noise being the main impediment for our holography datasets.

A.1. Reduced AutoEncoder

First, a plain AutoEncoder model with convolutional layers is implemented, with
a latent space of size varying from 32 to 4096, with Mean Squared Error loss.
The reconstructions for data samples are manually validated to confirm sunquake
information is preserved. Due to varying morphological structure between events,
reconstructions obtained from latent sizes lower than 1024 do not recover the
originals, while larger latent sizes fail in boosting the classification performance
even though they support good reconstructions.

A.2. Variational AutoEncoder

If the AutoEncoder objective is extended to include and simultaneously optimize
both reconstruction and latent space distribution losses, the latent state for an
observation is closer to others but deviating when necessary to describe distinc-
tive features in the input (Kingma and Welling, 2019). This enables balanced
latent-state representations of the input data, and it provides artificially gener-
ated reconstructions that follow the learned distributions. Following Kingma and
Welling (2014), we modify our model into a Variational AutoEncoder (VAE),
by updating the Encoder to also output a distribution in the latent space with
explicitly modeled variance.
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Figure 18. AutoEncoder Architecture (Xu et al., 2020)(left), Variational AutoEncoder recon-
structions of three randomly chosen 8-bit scaled intensity data samples from the ML prepared
dataset (right).

Although VAE theoretically improves classifications through the learned rep-
resentation, the experiments performed on our dataset still show weak recon-
structions, depicting almost entirely black images. Classification results obtained
from the latent representation of the input data also demonstrate that sunquake
highlights are not captured in the latent space. During classification, experiments
are performed using di↵erent loss functions, but even imbalance-specific losses,
such as focal loss (Lin et al., 2017), are still incapable of providing reliable results.

Additional di↵erent variants of VAE are utilized to find a more suitable design
that would i) provide reconstructions focused on the sunquake rather than the
AR of the input sample, and that would; ii) be able to capture small variations
around or inside the AR where sunquakes usually occur. We take note of Cai,
Gao, and Ji (2019), who found that the typically used squared L2-reconstruction
loss function results in problems such as blurry images, and that it is also known
to be sensitive to large noise.

Chen, Chen, and Zhang (2019) replace VAE’s L2-objective with the log hy-
perbolic cosine (log-cosh) loss, which behaves as L2 at small values and as L1

at large values. Compared to L2, according to Chen, Chen, and Zhang (2019),
the log-cosh loss improves the reconstruction without damaging the latent-space
optimization, thus automatically keeping a balance between the reconstruction
and the generation.

The images in our dataset are noisy, especially in areas outside ARs. Moreover,
the sunquake signature represents only a small variation in the data for a short
duration of time. Because of this, we believe that an objective that is less sensitive
to noise could improve the model’s focus.

We find that the log-cosh loss benefits the training process and improves test
accuracy by ⇡ 25% when compared to the reduced AutoEncoder (see Table 6).
Despite the improvement, sunquakes are still unidentifiable in the reconstruc-
tions with the naked eye. Reconstructions are blurry representations of the AR,
with little to no detail, as depicted in Figure 18.
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Figure 19. UMAP Components constructed from AutoEncoder-produced embeddings, for all
samples in a singular event using 250 (left) and 15 (right) neighbors. Sample Count is 256. The

colorbar goes symmetrically from yellow for frames corresponding to the sunquake, to purple

for frames on either side of the sunquake.

A.3. Analysis of the Latent Features Quality

To perform classification on top of the encoded data, various classifiers are
trained over the encoding provided by the Log-cosh VAE: K-Nearest Neighbors
(KNN) with and without bagging, Linear Classifier, Support Vector Classifier
(SVC) (Cortes and Vapnik, 1995), Logistic Regression, fine-tuned unfrozen layers
of the VAE, Stochastic Gradient Descent, and Random Forest (Ho, 1995). The
results are not satisfactory, but are the first to provide a true meaningful input. A
report of the best results achieved using Variational AutoEncoders as backbones
for our models is displayed in Table 6. Although still unreliable for classification,
the reconstructions may prove potentially useful for tasks related to masking the
AR with the purpose of reducing noise present in the dataset.

Figure 19 shows UMAPs built from the latent encoding of sunquake samples.
In the left panel, we observe that clusters are formed in concentric circles, having
the sunquake observations at the center. In the right panel, where fewer neighbors
are selected, the clustering is lost. We infer that the observation’s background
noise and the morphological structure of the AR play a significant role in the
AutoEncoder output, as background counts in the AR are systematically lower,
and morphologies are not consistent between the sunquake events. We found
these e↵ects to be significant enough to hinder a proper cluster-like classifica-
tion of the sunquakes by using an AutoEncoder-based solution with reduced
complexity.

It is important to underline that the clustering mentioned above is analyzed
per sunquake event. The same analysis performed on the encoding extracted
from the entire dataset shows no evident clusters. This supports our hypothe-
sis that the encoding obtained using the mentioned unsupervised techniques is
incapable of clustering data points from sunquakes with very di↵erent ARs in
a two-dimensional setting. However, the few positive results combined with an
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Table 6. Macro Average performances of di↵erent classifiers over AutoEncoder-produced
embeddings, trained with SMOTE augmentation, on the SC23 test data (171 negative and
26 positive samples)

Classifier K-NN (Bagging) SVC (Poly) Logistic Regression SGD

AE Type AE Log-Cosh VAE AE Log-Cosh AE AE Log-Cosh VAE AE Log-Cosh VAE

Precision 0.50 0.57 0.51 0.76 0.50 0.48 0.50 0.54

Recall 0.46 0.56 0.52 0.59 0.54 0.48 0.50 0.55

F1-Score 0.39 0.56 0.05 0.61 0.39 0.48 0.39 0.54

Accuracy 0.62 0.82 0.05 0.88 0.59 0.78 0.61 0.74

Metric Avg. 0.49 0.62 0.28 0.71 0.5 0.55 0.5 0.59

increased precision (see Table 6) when classifying the data show that some of the
relevant aspects in the data are captured by the encoder, especially considering
that no recurrent techniques are used in this approach.

We present the less-satisfactory performance of the AutoEncoder-based meth-
ods discussed above, in Table 6.

B. Self-supervised and Supervised Contrastive Learning
approaches

This section describes the experiments performed using self-supervised and su-
pervised contrastive learning approaches that led to establishing the two-step
learning approach described in Section 3.1.

B.1. Self-Supervised Contrastive Learning

The framework proposed by Chen et al. (2020) is followed, where, for all the
images in each data batch, two augmentations are drawn out so that a double-
sized batch is obtained. Specific details on what augmentations were used in
our experiments are presented in Subsection 3.2. Batch data are then passed
through the CL model, where SimCLR loss (Chen et al., 2020) is used. The loss
is defined as:

li,j = �log
e
sim(zizj)

⌧

P2N
k=1 mask[k 6=i]e

sim(zizk)
⌧

. (4)

In the equation above, (i, j) represents a positive pair of samples, mask is an
indicator function evaluating to 1 if k 6= i, z represents the embedding obtained
from passing the input through the model, sim represents cosine similarity. ⌧ is
a parameter used to regularize the contribution of representations (Chen et al.,
2020).

At low temperatures, smaller distances are favored, which leads to better
capturing of minor di↵erences but makes training more di�cult since numerical
instability increases (Khosla et al., 2020). In the experiments performed on
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our data, a temperature factor lower than ⌧ = 0.07 is not usable due to this
instability, and generally values of ⌧ 2 [0.07, 0.1] work best.

We experiment with dimension size for the encoding (latent representation
resulting from the backbone) and the projection (latent representation resulting
from the contrastive head) varying from 20 and up to 2048 features.

Because the discussed approach is self-supervised, labels are not considered.
The classification is performed using a weighted Cross Entropy loss after the
contrastive training is finalized. We experiment with freezing network layers in
the backbone network during classification. This process prevents any updates to
the weights of the frozen layers of the network and assures that changes inferring
from classification are not so drastic as to erase relevant information learned by
the network during CL.

When classifying the reduced representations, we experiment with using both
the encoding and the projection. On average, results of this approach are similar
to those of the AutoEncoder methods. Seeing that this type of approach is not
able to capture sunquake signatures in the latent representation, we shift to the
recently emerging Supervised CL (Khosla et al., 2020).

B.2. Supervised Contrastive Learning

The implementation of a supervised-contrastive model as compared to the self-
supervised one di↵ers only in loss function. The Supervised Contrastive loss
function (Khosla et al., 2020), written in the same manner as Equation 5 is
defined for each anchor i as:

li =
X

i2I

�1

|P (i)|
X

p2P (i)

log
e
sim(zizp)

⌧

P2N
k=1 mask[k 6=i]e

sim(zizk)
⌧

. (5)

The meaning of most parameters is maintained as in Equation 4. P represents
the set of indices of the positives, which are all of the samples that share the
same class as the anchor and their augmentations.

To verify the validity of the implementation of our models, an experiment is
performed on a commonly used small-scale ML dataset, CIFAR-10 (Krizhevsky,
2009). The model setup is kept in place, and for augmentations both CIFAR
specific augmentations and ours are used. Findings of this experiment show that
the model is only capable of convergence after ⇡100 epochs (top-1 classification
accuracy > 90.0). Up to this point, the model is stuck in a local minimum. We
deduce that several more epochs are needed to improve convergence on our data,
especially because the data structure has a higher complexity, a larger imbalance
factor, is noisier, and is larger in size.

Increasing the number of epochs for the supervised model shows a similar
behavior in terms of local minima, but the class imbalance factor still posed
a great impact on the classification results. A Two-step approach combining
self-supervised with supervised CL models was found to be robust in capturing
sunquake features, as shown in Section 3.1.
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C. Data augmentation and sampling approaches

This section describes all the data augmentation methods briefly mentioned in
Section 3.2, following the categories proposed by (Yang et al., 2022).

C.1. Geometry

Flips: We apply horizontal and vertical flips as a method of upsampling by adding
flipped copies of the positive samples to the dataset. We also apply flip operations
at runtime, to ensure that the transforms do not infer external information to
the model regarding positive samples.

Crops: The random-crop transform is typically used in most CL approaches.
We found it unsuitable for our data since the relevant area for the sunquake
signature is very small, and there is a chance of cropping out that specific area.
Yang et al. (2022) also argue that this might not be a label-preserving transfor-
mation. Adding this augmentation to our data at runtime prevents convergence
of supervised methods.

Rotations: We apply right rotation on axes of 90°, 180°, and 270°. Because
our data and labels are invariant to rotations, this transformation is usable. As
with flip operations, rotations are used as a means to upsample our dataset with
the purpose of reducing class imbalance. To make sure that the model does not
learn to associate geometric transforms with a positive class, we apply at least
the same number of rotated frames to the negative samples at runtime.

Translations: Because the data are not translation invariant, we avoid this
category of transforms to preserve the labels.

C.2. Kernel Filters

Gaussian Blur: We experiment with Gaussian Blur and argue that it is not
always label preserving, hindering the sunquake information for some of the
positive samples. We found it to not provide notable improvements in the learn-
ing process, and thus we discard this transformation.

C.3. Mixing Images

A custom Custom Time-Based Mixing augmentation is described in Section 3.2.

C.4. Auto Augment Policies

ImageNet and CIFAR Auto Augment Policies: During the experiment with the
CIFAR dataset described in Section 3.1 we apply the Auto Augment policies
generated for ImageNet and CIFAR on both the CIFAR-10 dataset and ours, and
while the ImageNet policy works well on CIFAR-10, when applied to our dataset
the results were found to be poor.
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Figure 20. Altered Random Erase applied to a selection of 8-bit intensity scaled frames from
the SC23 and SC24 dataset. Frame indices and events are mentioned in the column titles.

C.5. Color Space

As our data is gray-scale, we do not use many color altering transforms (i.e. color
jitter). We experiment with contrast, posterize, brightness, and solarization and
manually review the augmented data to analyze the impact on the sunquake
preservation. With the exception below, color-space transforms are ine↵ective.

We applied a color space like transform, Custom Solarized Low Pass Filter,
as described in Section 3.2.

C.6. Occlusion

Random Erasing: This type of augmentation developed by Zhong et al. (2020)
and inspired by the mechanisms of dropout regularization (Yang et al., 2022) is
typically used for scenarios where the detection mechanism tends to fail due to
occlusions. It forces the model to learn more relevant features about an image,
while preventing overfitting. In typical CL tasks, occlusion is achieved via the
Random Crop transform. In this case, we aim to shift the model’s focus from
the AR to the sunquake. In Section 3.2 we describe customizing this type of
augmentation to force the network to pay attention to all areas inside the image.
We do this by occluding random areas of both the noisy regions and the AR (see
Figure 20).

D. IoU Metric Limitations in Sunquake Detection

Figure 21 highlights the OD prediction boxes and the GT boxes for an event
in SC24, where the discrepancy between a correct detection and a low IoU
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Figure 21. Position of identified OD kernel marked by the blue box vs. GT kernels marked
by the red box for six 8-bit scaled intensity data samples from the event 07 September 2011
22:32 in SC24. IoU varies between 30% and 35% for the given frames.

discussed in Section 3.4 is exemplified. For this event, despite a valid signature
identification, the average OD IoU for all frames is small (22.3%), and individual
IoUs for the frames depicted in the figure are as follows: 34.1%, 32.7%, 30.8%,
33%, 34.2%, and 36%.
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E. List of Acronyms

SQ Sunquake
SC Solar Cycle
AR Active Region
SDO Solar Dynamics Observatory
SOHO Solar and Heliospheric Observatory
HMI Helioseismic and Magnetic Imager
MDI Solar and Heliospheric Observator
AIA Atmospheric Imaging Assembly
RHESSI Ramaty High Energy Solar Spectroscopic Image
ML Machine Learning
MLP Multilayer Perceptron
CNN Convolutional Neural Networks
R� CNN Region � Based Convolutional Neural Networks
V AE V ariational AutoEncoder
CL Contrastive Learning
OD Object Detection
SV C Support V ector Classifier
SGD Stochastic Gradient Descent
RBF Radial basis function
PCA Principal Component Analysis
UMAP Uniform Manifold Approximation and Projection
SMOTE Synthetic Minority Over � Sampling Technique
FP False Positive
FN False Negative
TP True Positive
TN True Negative
GT Ground Truth
IoU Intersection over Union
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